skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Williams, Ivor D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coral reefs are in global decline primarily due to climate change. Herbivory is often viewed as key to maintaining coral‐dominated reefs, and herbivore management is gaining traction as a possible strategy for promoting reef resilience. The functional impact of herbivorous fishes has typically been inferred from total biomass, but robust estimates of ecological processes are needed to better inform management targets. Here, we provide a framework to calculate rates of herbivory across Pacific reefs. We synthesized available observations of foraging metrics in relation to fish body size and found considerable variation, even among closely related species. We then applied these allometric functions to survey data and calculated rates of herbivory for acanthurids and scarines, which make up the vast majority of herbivorous fish biomass in the Pacific. Estimated rates of algal consumption, area scraped, and bioerosion varied across islands, with noticeable differences that may align with the relative influence of human population density among underlying herbivore functional groups. We found no evidence of compensatory relationships among herbivore processes whereby decreasing rates in one type of herbivory is offset by increasing rates in another. We observed nonlinear, positive relationships between fish biomass and rates of herbivory. Yet, for a given biomass, the corresponding rates of herbivory varied among regions, and we observed instances where islands with the greatest biomass did not also have the highest rates of herbivory. Islands with the largest size classes of herbivores did not consistently exhibit greater rates of herbivory, and we did not find a clear, consistent pattern between the number of fish species and corresponding rates of herbivore processes. CroppingAcanthurusspp. provided the greatest proportion of algal consumption at every island, yet no single species accounted for the majority of this process, whereas we identified parrotfish species that provided >75% of scraping or bioerosion at certain islands. Our results emphasize the importance of considering the species and size composition of herbivore assemblages when estimating processes, rather than relying on total biomass alone. Lastly, we highlight gaps in foraging observations and additional work needed to further broaden our ability to quantify the ecological processes of herbivores. 
    more » « less
  2. Abstract Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks. We reveal that >50% of sites and jurisdictions with available information have stocks of conservation concern, having failed at least one fisheries sustainability benchmark. We quantify the trade-offs between biodiversity, fish length, and ecosystem functions relative to key benchmarks and highlight the ecological benefits of increasing sustainability. Our approach yields multispecies sustainable reference points for coral reef fisheries using environmental conditions, a promising means for enhancing the sustainability of the world’s coral reef fisheries. 
    more » « less
  3. The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met. Critically, management can provide substantial conservation benefits to most reefs for fisheries and ecological function, but not biodiversity goals, given their degraded state and the levels of human pressure they face. 
    more » « less